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1 . var i at i on and stabl e var i at i on

Variation: when more than one variant has non-zero
frequency in a population of speakers
Stable variation: when this state of affairs is strictly stable
over time

i.e. barring other changes to the system, and discounting
stochastic finite-size effects, the state of variation is a
stable equilibrium
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2 . b i a s and var i ab l e b i a s

Now there are mathematical models of change1,2,3

But they mostly assume bias (e.g. phonetic, sociolinguistic)
is uniform across speakers
What if it was variable?

1Blythe, R. A. & Croft, W. (2012). S-curves and the mechanisms of
propagation in language change. Language, 88, 269–304.

2Ke, J., Gong, T. & Wang, W. S.-Y. (2008). Language change and social
networks. Communications in Computational Physics, 3, 935–949.

3Pierrehumbert, J. B. (2001). Exemplar dynamics: word frequency, lenition
and contrast. In J. L. Bybee & Paul J. Hopper (Eds.), Frequency and the
emergence of linguistic structure, 137–157. Amsterdam: Benjamins.
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a s impl e model

N speakers
Binary competition between two variants A and B
p = prob. of A; 1 − p = prob. of B
b: a bias parameter
Dynamics: at each iteration, each speaker updates p as

p← (1 − γ)p + γpb, (1)

where
0 < γ < 1 is a learning rate
p is the mean of p in a random sample of K speakers

Then p→ 1 over time if 0 < b < 1; and p→ 0 if b > 1
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a s impl e model

Now replace the bias parameter b with b̂ sampled
uniformly at random from an interval

[
β
1+ξ , β + ξ

]

b̂ then varies from speaker to speaker
Expectation is E[b̂] = β
ξ controls the amount of variation
Question: how does the asymptotic behaviour of p vary as
a function of β and ξ?
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a s impl e model

Assume definite values for N, K and γ, repeat simulation η
times and observe emerging general pattern

η = 50
N = 100
K = 10
γ = 0.01
assume each speaker lives around 100 iterations
β and ξ allowed to vary freely

Start from an initial state where p = 0.01
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quant i f y i ng stab i l i t y

The above shows that p attains a non-zero, non-unity
value if ξ is large enough
But is this stable?
Quantify with

S := 1 − (pmaxfin − pminfin), (2)

where pmaxfin is the maximum of p over the final
so-and-so-many iterations and pminfin is the minimum
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quant i f y i ng stabl e var i at i on

Finally, let p∗ stand for the value of p at the end of the
simulation
We can find out how much p∗ diverges from 0.5 (the
maximum entropy situation) by considering the inverse
distance

D := 1 − `0.5 − p∗` (3)

Now consider the product

SD = (1 − (pmaxfin − pminfin)) (1 − `0.5 − p∗`) (4)

This quantifies, to some extent, the notion of stable
variation
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i n t er im summary

A mechanism for stable variation: non-uniform bias
distributions over speakers in a speech community
Here, implemented on a very simple model
Need to examine how other types of model will behave
under this modification
Alternative ways of quantifying stability and stable
variation could also be explored
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3 . non -b inary compet i t i on

Another route to stable variation: competition among > 2
variants
Demonstrate this using a generalization of Yang’s4,5
variational learner

4Yang, C. D. (2000). Internal and external forces in language change.
Language Variation and Change, 12, 231–250.

5Yang, C. D. (2002). Knowledge and learning in natural language. Oxford:
Oxford University Press.
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the var i at i onal l earner

Yang: the learner has access to all grammars licensed by
UG and assigns a probability pi to each grammar Gi with a
type of reinforcement learning
In a monolingual setting learner known to converge to
target grammar
Language change occurs when learner receives input from
two grammars G1 and G2 and one parses more input than
the other
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what about . . . ?

Question: what might happen in a situation of three-way
competition?

Input from G1, G2 and G3 available to the learner, with no
subset–superset relations among the Gi

. . . in four-way competition?

. . . in n-way competition?
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l i n ear reward–penalty l earn ing ( lrp )

First let’s review the 2-grammar case:

1 Learner picks G1 with prob. p1 and G2 with prob. p2

2 Assume WLOG G1 was picked. Present input sentence s.
If G1 parses s, put {

p1 ← p1 + γ(1 − p1)
p2 ← (1 − γ)p2

(5)

Else, put {
p1 ← (1 − γ)p1
p2 ← p2 + γ(1 − p2)

(6)

where 0 < γ < 1 is a learning rate.
3 This is iterated for N input sentences.
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penalty probab i l i t i e s

The penalty probability of grammar Gi, relative to
environment E, is

ci = Prob(Gi doesn’t parse s ` s ∈ E) (11)

Now notice: in a 2-grammar setting, the penalty of G1 can
be expressed as

c1 = α2π2, (12)
where

π2 = prob. that the learner encounters a sentence
generated by G2
α2 = prob. that this sentence is not parsable by G1 (called
the advantage of G2 by Yang)

By symmetry, c2 = α1π1
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Theorem (Narendra & Thathachar6)
Assume the LRP learner samples a stationary environment at
random. Then, if Nγ → ∞ and γ → 0, the weights are normally
distributed with means satisfying

E[p1]→
1

1 + c1/c2
and E[p2]→

1
1 + c2/c1

(13)

and variances which tend to 0.

In other words: supposing the learner receives a large
number of input sentences (large N) and only makes small
adjustments (small γ), he will settle upon weights which
are very well approximated by

p∗1 =
1

1 + α2π2
α1π1

and p∗2 =
1

1 + α1π1
α2π2

(14)

6Narendra, K. & Thathachar, M. A. L. (1989). Learning automata: an
introduction. Englewood Cliffs, NJ: Prentice-Hall.
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penalty probab i l i t i e s

Assuming non-overlapping generations of learners, this
gives the inter-generational dynamics




p1(t + 1) =
(
1 + α2p2(t)

α1p1(t)

)−1
p2(t + 1) =

(
1 + α1p1(t)

α2p2(t)

)−1 (15)

Logistic with slope governed by the ratio α1/α2:
G1 wins if α1 > α2
G2 wins if α1 < α2

Therefore predicts stable variation to be impossible (this
is Yang’s Fundamental Theorem of Language Change)
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penalty probab i l i t i e s , n > 2

The LRP algorithm works for an arbitrary number n of
grammars
A derivation analogous to the above, but more
complicated, obtains. Consider n = 3 first:

α{1}
α{1,2} α{2}

α{2,3}

α{3}

α{1,3}

32 / 69



penalty probab i l i t i e s , n > 2

α{1}
α{1,2} α{2}

α{2,3}

α{3}

α{1,3}

For G1, one has the penalty

c1 = α{2}p2

+α{3}p3 +α{2,3}(p2 +p3) (16)

Rearrange terms:

(α{2} + α{2,3}︸         ︷︷         ︸
=:α21

)p2 + (α{3} + α{2,3}︸         ︷︷         ︸
=:α31

)p3 (17)

and call α21 = α{2} + α{2,3} the
relative advantage of G2 over G1
(similarly for α31)

Intuitively, αji = prob. of a sentence
which is parsed by Gj but not by Gi
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penalty probab i l i t i e s , n > 2

Procedure generalizes to n grammars, whereby one finds

ci =
n∑
j=1
j,i

αjipj (18)

with
αji =

∑
K∈Kji

αK, (19)

where Kji = {X ⊆ {1, . . . , n} \ {i} ` j ∈ X}.
Here αK = prob. of a sentence which is parsed by all and
only the grammars G` with ` ∈ K
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penalty probab i l i t i e s , n > 2

Now collect the relative advantages in an
advantage matrix :

A =

*.....
,

0 α12 . . . α1n
α21 0 . . . α2n
...

...
. . .

...

αn1 αn2 . . . 0

+/////
-

(20)

The properties of this matrix will determine the dynamics
System still very simple, so can be explored analytically
Strategy: start with simple advantage matrices, proceeding
then to more complicated cases
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penalty probab i l i t i e s , n > 2

Inter-generational evolution equation now becomes

pi(t + 1) =
*....
,

1 +
n∑
j=1
j,i

∑n
k=1 αkipk(t)∑n
`=1 α` jp`(t)

+////
-

−1

(21)

for i = 1, . . . , n.
For n = 3, we have




p1(t + 1) =
(
1 + α21p2(t)+α31p3(t)

α12p1(t)+α32p3(t) +
α21p2(t)+α31p3(t)
α13p1(t)+α23p2(t)

)−1
p2(t + 1) =

(
1 + α12p1(t)+α32p3(t)

α21p2(t)+α31p3(t) +
α12p1(t)+α32p3(t)
α23p2(t)+α13p1(t)

)−1
p3(t + 1) =

(
1 + α13p1(t)+α23p2(t)

α31p3(t)+α21p2(t) +
α13p1(t)+α23p2(t)
α32p3(t)+α12p1(t)

)−1 (22)
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dynam i ca l syst ems 101

Let x denote the state of the system at an arbitrary time,
and let f t(x) be the state after t iterations

Fix(ed )point or equilibrium: a state x with the property
f 1(x) = x
Locally stable fixpoint: a fixpoint x with this property: for
any state y sufficiently close to x, f t(y)→ x as t→ ∞
Globally stable fixpoint: a fixpoint x with this property: for
any state y, f t(y)→ x as t→ ∞
Unstable fixpoint: a fixpoint x that is neither locally nor
globally stable
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dynam i ca l syst ems 101

For us, the system states are vectors of grammar weights:
x = p = (p1, p2, . . . , pn)
Stable variation, then, occurs if we have a stable fixpoint p
with this property: pi = 1 for no grammar Gi
For n = 3, best illustrated using a ternary plot :

p3

p1 p2
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p3

p1 p2

39 / 69



the v ert ex f i x po in ts

Easily proved: the vertices (states where pi = 1 for some
i) are fixpoints for any advantage matrix A
Their stability, however, may change as A changes

p3

p1 p2

p3

p1 p2
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babe l i an syst ems

Start with the simplest system possible: no asymmetries in
pairwise grammar advantages
I.e. advantage matrix is of the form

A =

*.....
,

0 a . . . a
a 0 . . . a
...
...
. . .

...

a a . . . 0

+/////
-

(23)

for some a. Call such a system Babelian .
Result:
1 The vertex fixpoints are unstable
2 There is a single globally stable fixpoint at
p = (1/n, 1/n, . . . , 1/n)
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s em i - babe l i an syst ems

Now assume advantage matrix is of the form

A =

*.....
,

0 b . . . b
a 0 . . . a
...
...
. . .

...

a a . . . 0

+/////
-

(24)

i.e. Babelian up to G1 (WLOG), which has b rather than a
Call such a system semi-Babelian
If b > a, G1 is “better” than the rest
If b < a, the rest are “better” than G1
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s em i - babe l i an syst ems

Behaviour of such a system is more complicated, with b/a
a bifurcation parameter
Can be exactly solved in the 3-grammar case, where we
have:

Assume b/a ≥ 2. Then only the vertex fixpoints exist and
they are stable
Assume 0 ≤ b/a < 2. Then the vertex fixpoints are
unstable and a further stable fixpoint exists at

(p1, p2, p3) =
(
−

1
2b/a − 5 ,

b/a − 2
2b/a − 5 ,

b/a − 2
2b/a − 5

)
(25)

44 / 69



p3

p1 p2

b/a = 3.0
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p3

p1 p2

b/a = 2.1
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p3

p1 p2

b/a = 1.9
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p3

p1 p2

b/a = 1.5
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p3

p1 p2

b/a = 1.3
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i n t er im summary

Have generalized Yang’s model of language change to a
setting of n-way competition
Have abstracted from this the two very special cases of
situation: Babelian and semi-Babelian
Have demonstrated that stable variation occurs in both
cases

In Babelian systems: always
In semi-Babelian systems: if one grammar is not too
advantageous compared to the rest

Empirical work needs to establish what this means
Does n-way competition with n > 2 actually exist?
If so, do we see a tendency towards stable variation?

52 / 69



4 . parametr i c spac es

Problem: learners operate in a parametric space
I.e. it does not seem likely that the learner assigns a
probability to each grammar (of which there are
astronomically many!), but to a number of syntactic
parameters
Does this affect our results?
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na i v e paramet er l earner (np l )

So now, assume learner sets probabilities pi for
syntactic parameters , not for grammars

Assume binary parameters: then n parameters give 2n
grammars

Problem: if parsing event is unsuccessful, how does
learner know which parameter setting was the culprit?
Yang’s7 Naive Parameter Learner : demote all parameter
probabilities with unsuccessful parsing, promote all
parameter probabilities with successful parsing
Problem: Narendra & Thathachar’s asymptotic result on
LRP learning not available

Response: fall back on computer simulations, assuming
parameter independence for simplicity

7Yang, C. D. (2002). Knowledge and learning in natural language. Oxford:
Oxford University Press.
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na i v e paramet er l earner (np l )

Computer simulations of iterated NPL with following
model parameters:

n = 2: number of syntactic parameters (thus 4 grammars)
N = 20000: number of sentences learner hears
γ = 0.005: learning rate, as in LRP
αi: prob. of a sentence which is only parsable if the ith
parameter is set on
βi: prob. of a sentence which is only parsable if the ith
parameter is set off
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5 . conclus ions
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summary

We have defined stable variation as a state p with the
following properties:
1 no variant has probability one, i.e. pi = 1 for no i
2 it is asymptotically stable: barring a tweaking of the
system’s parameters, and discounting stochastic finite-size
effects, the system’s state will be attracted to p over
positive time

A point attractor in Dyn Syst terminology.
We have shown that such states can exist in at least three
ways:

Inter-speaker variation in the way a bias is applied
Intra-speaker distributions of > 2 grammar probabilities
Intra-speaker distributions of > 1 parameter probabilities
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summary

The argument here is a conceptual one: this is what these
models predict
Stable variation is endemic to the models: if the models
capture reality at all, we should see plenty of stable
variation in the real world
Need to explore this in more detail from an empirical
point of view
Conceptual issues that need some thought:

Does it have to be a point attractor?
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summary

The argument here is a conceptual one: this is what these
models predict
Stable variation is endemic to the models: if the models
capture reality at all, we should see plenty of stable
variation in the real world
Need to explore this in more detail from an empirical
point of view
Conceptual issues that need some thought:

Does it have to be a point attractor?
How to think about finite-size effects?
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